Home PHẦN HÌNH HỌC - TOÁN 10 ÔN TẬP CUỐI NĂM - HÌNH HỌC 10 Bài 4 trang 99 SGK Hình học 10

Bài 4 trang 99 SGK Hình học 10

586
0

Giải bài 4 trang 99 SGK Hình học 10. Cho tam giác ABC đều có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm

Đề bài

Cho tam giác \(ABC\) đều có cạnh bằng \(6cm\). Một điểm \(M\) nằm trên cạnh \(BC\) sao cho \(BM  = 2cm\)

a) Tính độ dài của đoạn thẳng \(AM\) và tính cosin của góc \(BAM\)

b) Tính bán kính đường tròn ngoại tiếp tam giác \(ABM.\)

c) Tính độ dài đường trung tuyến vẽ từ \(C\) của tam giác \(ACM.\)

d) Tính diện tích tam giác \(ABM.\)

Lời giải chi tiết

a) Ta có:

\( A{M^2} = B{A^2} + B{M^2}\)\( – 2BA.BM.\cos\widehat {ABM}\)

\(\eqalign{
& \Rightarrow A{M^2} = 36 + 4 – 2.6.2.{1 \over 2} \cr
& \Rightarrow A{M^2} = 28 \Rightarrow AM = 2\sqrt 7 (cm) \cr} \)

Ta cũng có:

\(\eqalign{
& \cos \widehat {BAM }= {{A{B^2} + A{M^2} – B{M^2}} \over {2AB.AM}} \cr
& \Rightarrow \cos\widehat { BAM }= {{5\sqrt 7 } \over {14}} \cr} \)

b) Trong tam giác \(ABM\), theo định lí Sin ta có:

\(\eqalign{
& {{AM} \over {\sin \widehat {ABM}}} = 2R \Leftrightarrow R = {{AM} \over {2\sin \widehat {ABM}}} \cr
& R = {{2\sqrt 7 } \over {2\sin {{60}^0}}} = {{2\sqrt {21} } \over 3}(cm) \cr} \)

c) Áp dụng công thức đường trung tuyến ta có:

\(\eqalign{
& C{P^2} = {{C{A^2} + C{M^2}} \over 2} – {{A{M^2}} \over 4} \cr
& \Rightarrow C{P^2} = {{36 + 16} \over 2} – {{28} \over 4} \cr
& \Rightarrow C{P^2} = 19 \Rightarrow CP = \sqrt {19} \cr}\)

d) Diện tích tam giác \(ABM\) là:

\(S = {1 \over 2}BA.BM\sin \widehat {ABM} \)\(= {1 \over 2}6.2\sin {60^0} = 3\sqrt 3 (c{m^2})\)

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.