Home PHẦN HÌNH HỌC - TOÁN 12 ÔN TẬP CUỐI NĂM - HÌNH HỌC 12 Bài 15 trang 101 SGK Hình học 12

Bài 15 trang 101 SGK Hình học 12

757
0

Giải bài 15 trang 101 SGK Hình học 12. Cho hai đường thẳng chéo nhau.a) Viết phương trình các mặt phẳng (α) và (β) song song với nhau và lần lượt chứa d và d'.

Đề bài

Cho hai đường thẳng chéo nhau

\(d:\,\,\left\{ \begin{array}{l}x = 2 – t\\y = – 1 + t\\z = 1 – t\end{array} \right.\,\,\,\,\,\,\,\,\,d’:\,\,\left\{ \begin{array}{l}x = 2 + 2t’\\y = t’\\z = 1 + t’\end{array} \right.\)

a) Viết phương trình các mặt phẳng \((α)\) và \((β)\) song song với nhau và lần lượt chứa \(d\) và \(d’\).

b) Lấy hai điểm \(M(2 ; -1 ; 1)\) và \(M'(2 ; 0 ; 1)\) lần lượt trên \(d\) và \(d’\). Tính khoảng cách từ \(M\) đến mặt phẳng \((β)\) và khoảng cách từ \(M’\) đến mặt phẳng \((α)\). So sánh hai khoảng cách đó.

Phương pháp giải – Xem chi tiết

a) Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d’\)

   Mặt phẳng \(\beta\) chính là mặt phẳng chứa \(d’\) và song song với \(d\)

b) Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.

Lời giải chi tiết

a) Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d’\)

\(d\) có vectơ chỉ phương \(\overrightarrow a  = (-1; 1; -1)\).

\(d’\) có vectơ chỉ phương \(\overrightarrow {a’}  = (2; 1; 1)\)

Vectơ pháp tuyến \(\overrightarrow n \) của \((α)\) vuông góc với \(\overrightarrow a \) và \(\overrightarrow {a’} \) nên: \(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow {a’} } \right] = \left( {2; – 1;3} \right)\)

Đường thẳng \(d\) chứa điểm \(A(2; -1; 1)\). Mặt phẳng \((α)\) chứa \(d\) nên chứa điểm \(A\). Phương trình của \((α)\):

\(2(x – 2) – 1(y + 1) – 3(z – 1) = 0\)

\(\Leftrightarrow  2x – y – 3z – 2 = 0\)

Mặt phẳng \((\beta)\) chính là mặt phẳng chứa \(d’\) và song song với \(d\) nên cũng nhận \(\overrightarrow n  = \left( {2; – 1;3} \right)\) là VTPT và đi qua điểm \(B\left( {2;0;1} \right)\)

Suy ra phương trình mặt phẳng \((β)\): \(2(x-2)-y-3(z-1)=0 \Leftrightarrow  2x – y – 3z – 1 = 0\)

b) Ta có: \(d (M,(β))\) =\({{\left| {2.2 – 1.( – 1) – 3.1 – 1} \right|} \over {\sqrt {{2^2} + {{( – 1)}^2} + {{( – 3)}^2}} }} = {1 \over {\sqrt {14} }}\)

              \(d\left( {M’;\left( \alpha  \right)} \right) = \frac{{\left| {2.2 – 1.0 – 3.1 – 2} \right|}}{{\sqrt {{2^2} + {{\left( { – 1} \right)}^2} + {{\left( { – 3} \right)}^2}} }} = \frac{1}{{\sqrt {14} }}\)

\(\Rightarrow d(M,(β)) = d(M’, (α))\)

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.