Tìm n để phân thức chia hết cho 2n +1.
Bài 83. Tìm \(n \in\mathbb Z\) để \(2{n^2} – n + 2\) chia hết cho \(2n +1\).
Giải
Ta có: \({{2{n^2} – n + 2} \over {2n + 1}} = {{2{n^2} + n – 2n – 1 + 3} \over {2n + 1}}\)
=\({{n\left( {2n + 1} \right) – \left( {2n + 1} \right) + 3} \over {2n + 1}} = {{\left( {2n + 1} \right)\left( {n – 1} \right) + 3} \over {2n + 1}} = n – 1 + {3 \over {2n + 1}}\)
Để \(2{n^2} – n + 2\) chia hết cho \(2n + 1\) (với \(n \in\mathbb Z)\) thì \(2n + 1\) phải là ước của \(3\). Do đó:
\(2n + 1 = 1 = > 2n = 0 = > n = 0\)
\(2n + 1 = – 1 = > 2n = – 2 = > n = – 1\)
\(2n + 1 = 3 = > 2n = 2 = > n = 1\)
\(2n + 1 = – 3 = > 2n = – 4 = > n = – 2\)
Vậy \(n = 0; -1; -2; 1\)